
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 233
Volume 2, Issue 2, April 2011

Software Reliability with SPC

Dr. R Satya Prasad
1
, K Ramchand H Rao

2
, Dr. R.R. L Kantham

3

1Associate Prof, Dept. of Computer Science & Eng, Acharya Nagarjuna University, Guntur, INDIA, profrsp@gmail.com
2 Dept. of Computer Science A.S.N. Degree College, Tenali, INDIA, ramkolasani@gmail.com

3 Prof., Dept. of Statistics, Acharya Nagarjuna University, Guntur, INDIA, kantam_rrl@rediffmail.com

Abstract: Software reliability is the probability of failure-free

operation of software in a specified environment during specified

time duration. Statistical Process Control can monitor the

forecasting of software failure and thereby contribute significantly

to the improvement of software reliability. Control charts are

widely used for software process control in the software industry.

Relatively little research work is, however, available on their use to

monitor failure process of software. It is well known that Control

charts can be used to analyze both small and large failure

frequency. Some control charts can be used for monitoring the

number of failures per fixed interval. However they are not effective

especially when the failure frequency becomes small. To meet this

desideratum, the control scheme adopted for our study is based on

the cumulative data between observations of failure. It is proposed

that the said control scheme can be easily and fruitfully applied to

monitor the software failure process for Half Logistic Distribution

based NHPP.

Keywords: Statistical Process Control (SPC), Software reliability,

Control Charts, Probability limits, Half Logistic Distribution

1. Introduction

The monitoring of Software reliability process is a

far from simple activity. In recent years, several authors have

recommended the use of SPC for software process

monitoring. A few others have highlighted the potential

pitfalls in its use[1].

The main thrust of the paper is to formalize and

present an array of guidelines in a disciplined process with a

view to helping the practitioner in putting SPC to correct use

during software process monitoring.

 Over the years, SPC has come to be widely used

among others, in manufacturing industries for the purpose of

controlling and improving processes. Our effort is to apply

SPC techniques in the software development process so as to

improve software reliability and quality [2]. It is reported that

SPC can be successfully applied to several processes for

software development, including software reliability process.

SPC is traditionally so well adopted in manufacturing

industry. In general software development activities are

more process centric than product centric which makes it

difficult to apply SPC in a straight forward manner.

The utilization of SPC for software reliability has

been the subject of study of several researchers. A few of

these studies are based on reliability process improvement

models. They turn the search light on SPC as a means of

accomplishing high process maturities. Some of the studies

furnish guidelines in the use of SPC by modifying general

SPC principles to suit the special requirements of software

development [2] (Burr and Owen[3]; Flora and Carleton[4]).

It is especially noteworthy that Burr and Owen provide

seminal guidelines by delineating the techniques currently in

vogue for managing and controlling the reliability of

software. Significantly, in doing so, their focus is on control

charts as efficient and appropriate SPC tools.

 It is accepted on all hands that Statistical process

control acts as a powerful tool for bringing about

improvement of quality as well as productivity of any

manufacturing procedure and is particularly relevant to

software development also. Viewed in this light, SPC is a

method of process management through application of

statistical analysis, which involves and includes the defining,

measuring, controlling, and improving of the processes[5].

2. Model Formulation.

 Let N t , t 0 ,m t , t be the counting

process, mean value function and intensity function of a

software failure phenomenon.

 The mean value function m(t) is finite valued, non

decreasing, non negative and bounded with the boundary

conditions

0, 0
()

,

t
m t

a t

 Here ‘a’ represents the expected number of software

failures eventually detected. If t is the corresponding

intensity function. t is a decreasing function of ()m t as

a result of repair action following early failures. A relation

between ()m t and t is given by

2 2() ()
2

b
t a m t

a

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 234
Volume 2, Issue 2, April 2011

 where ‘b’ is a positive constant, serving the

purpose of constant of proportional fall in t . This

relation indicates a decreasing trend for t with increase

in ()m t

From the fact that t is the derivative of ()m t we get the

following differential equation

2 2()
()

2

dm t b
a m t

dt a

whose solution is

1
()

1

bt

bt

a e
m t

e

 (2.1)

An NHPP with its mean value function given in equation

(2.1). Its intensity function is

2

2
()

1

bt

bt

abe
t

e

 (2.2)

3. Estimation Based on Inter Failure Times

 The mean value function and intensity function of

Half Logistic Model [6] are given by

1
() , 0, 0, 0

1

bt

bt

a e
m t a b t

e

 (3.1)

2

2
()

1

bt

bt

abe
t

e

 (3.2)

 The constants ‘a’, ’b’ which appear in the mean

value function and hence in NHPP, in intensity function

(error detection rate) and various other expressions are called

parameters of the model. In order to have an assessment of

the software reliability ‘a’,’ b’ are to be known or they are to

be estimated from a software failure data.

 Suppose we have ‘n’ time instants at which the first,

second, third..., n
th

 failures of a software are experienced. In

other words if kS is the total time to the k
th

 failure, ks is an

observation of random variable kS and ‘n’ such failures are

successively recorded. The joint probability of such failure

time realizations 1 2 3, , ,.... ns s s s is

().

1

()n

n
m s

k
k

L e s

 (3.3)

 The function given in equation (3.3) is called the

likelihood function of the given failure data. Values of ‘a’, ‘

b’ that would maximize L are called maximum likelihood

estimators (MLEs) and the method is called maximum

likelihood (ML) method of estimation. Accordingly ‘a’, ‘b’

would be solutions of the equations

log log
0 , 0

L L

a b

, 0

log
2

2

b

L

 Substituting the expressions for m(t), (t) given by

equations (3.1) and (3.2) in equation (3.3), taking logarithms,

differentiating with respect to ‘a’, ‘b’ and equating to zero,

after some joint simplification we get

1

1

n

n

bs

bs

e
a n

e

 (3.4)

1

1 1

. 2 .
() 2 1 0

11 1

k k

nn n

bs bsn n
k n

k bsbs bs
k k

s e s en n
g b s

b ee e

 (3.5)

1-n

1K 2)k
bs-

e(1

k
-bs

e 2
k

s
 2

2
)(

|

b

n
bg (3.6)

 The value of ‘b’ can be obtained using Newton-

Raphson method which when substituted in equation (3.4)

gives value of ‘a’.

4. Monitoring the time between failures using

control chart

The selection of proper SPC charts is essential to

effective statistical process control implementation and use.

There are many charts which use statistical techniques. It is

important to use the best chart for the given data, situation

and need[7].

There are advances charts that provide more

effective statistical analysis. The basic types of advanced

charts, depending on the type of data are the variable and

attribute charts. Variable control chats are designed to control

product or process parameters which are measured on a

continuous measurement scale. X-bar, R charts are variable

control charts.

Attributes are characteristics of a process which are

stated in terms of good are bad, accept or reject, etc.

Attribute charts are not sensitive to variation in the process as

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 235
Volume 2, Issue 2, April 2011

variables charts. However, when dealing with attributes and

used properly, especially by incorporating a real time pareto

analysis, they can be effective improvement tools. For

attribute data there are : p-charts, c-charts, np-charts, and u-

charts. We have named the control chart as Failures Control

Chart in this paper. The said control chart helps to assess the

software failure phenomena on the basis of the given inter-

failure time data[8].

4.1 Distribution of Time between failures

 For a software system during normal operation,

failures are random events caused by, for example, problem

in design or analysis and in some cases insufficient testing of

software. In this paper we applied Half Logistic

Distribution[6] to time between failures data. This

distribution uses cumulative time between failure data for

reliability monitoring.

 The equation for mean value function of Half

Logistic Distribution from equation 2.1

Equate the pdf of above m(t) to 0.99865, 0.00135, 0.5 and the

respective control limits are given by.

It gives

Ut
b

t
300122639.7

 (4.1)

Similarly

Lt
b

t
002700002.0

 (4.2)

Ct
b

t
098612289.1

 (4.3)

The control limits are such that the point above the

m(tU) (4.1)(UCL) is an alarm signal. A point below the

m(tL)(4.2) (LCL) is an indication of better quality of

software. A point within the control limits indicates stable

process.

4.2 Example

The procedure of a failures control chart for failure software

process will be illustrated with an example here. Table 1

shows the time between failures of a software product [8].

Table -1: Time between failures of a component[8]

Failure

number

Time between

Failure (hrs)

Failure

number

Time between

Failure (hrs)

Failure

number

Time between

Failure (hrs)

1 30.02 11 0.47 21 70.47

2 1.44 12 6.23 22 17.07

3 22.47 13 3.39 23 3.99

4 1.36 14 9.11 24 176.06

5 3.43 15 2.18 25 81.07

6 13.2 16 15.53 26 2.27

7 5.15 17 25.72 27 15.63

8 3.83 18 2.79 28 120.78

9 21 19 1.92 29 30.81

10 12.97 20 4.13 30 34.19

Table 2 shows the time between failures (cumulative) in hours, corresponding m(t) and successive difference between m(t)’s.

Table 2- Successive difference of mean value function (m(t))

Failure
Time between

Failure (hrs)

m(t) Successive

Difference of
Failure

Time between

Failure (hrs)

m(t) Successive

Difference of

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 236
Volume 2, Issue 2, April 2011

number (cumulative) m(t) number (cumulative) m(t)

1 30.02 2.364302301 0.112954122 15 136.25 10.35263373 1.078933884

2 31.46 2.477256423 1.75247064 16 151.78 11.43156761 1.720058168

3 53.93 4.229727062 0.105331424 17 177.5 13.15162578 0.181300217

4 55.29 4.335058486 0.265209098 18 180.29 13.332926 0.12414598

5 58.72 4.600267585 1.014117756 19 182.21 13.45707198 0.265317161

6 71.92 5.614385341 0.392552448 20 186.34 13.72238914 4.145675764

7 77.07 6.006937788 0.290696243 21 256.81 17.8680649 0.892060255

8 80.9 6.297634032 1.572927375 22 273.88 18.76012516 0.202130338

9 101.9 7.870561407 0.951568845 23 277.87 18.9622555 6.671109936

10 114.87 8.822130252 0.034170022 24 453.93 25.63336543 1.838854653

11 115.34 8.856300274 0.450773778 25 535 27.47222009 0.04287584

12 121.57 9.307074052 0.244275895 26 537.27 27.51509593 0.283919499

13 124.97 9.551349947 0.647546483 27 552.9 27.79901542 1.634249439

14 134.07 10.19889643 0.1537373 28 673.68 29.43326486 0.290356701

15 136.25 10.35263373 1.078933884 29 704.49 29.72362156 0.276439943

The values of ‘a’ and ‘b’ are computed by using the well

know iterative Newton-Rapson method. These values are

used to compute, Tu, TL, Tc i.e. UCL, LCL, CL

The values of a and b are 31.524466 and 0.005006 and

m(TU)/UCL = 31.48190797

m(TL)/LCL = 0.042558035

m(TC)/CL = 15.762233

The values of m(t) at Tc, Tu, TL and at the given

30 inter-failure times are calculated. Then the m(t)’s are

taken, which leads to 29 values. The graph with the said

inter-failure times 1 to 30 on X-axis, the 29 values of

m(t)’s on Y-axis, and the 3 control lines parallel to X-axis

at m(TL), m(TU), m(TC) respectively constitutes failures

control chart to assess the software failure phenomena on

the basis of the given inter-failures time data.

Figure 1: Failures Control Chart

5. Conclusion

This failures control chart (Figure 1) exemplifies

that, the first out – of – control situation is noticed at the

10
th

 failure with the corresponding successive difference

of m(t) falling below the LCL. It results in an earlier and

hence preferable out - of - control for the product. The

assignable cause for this is to be investigated and

promoted. In comparison, the time control chart for the

same data given in Xie et a1 [8] reveals an out - of -

control for the first time above the UCL at 23
rd

 failure.

Since the data of the time-control chart are inter-failure

times, a point above UCL for time-control chart is also a

preferable criterion for the product. The time control chart

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 237
Volume 2, Issue 2, April 2011

gives the first out - of - control signal in a positive way,

but at the 23
rd

 failure. Hence it is claimed that the

proposed failures control chart detects out - of - control in

a positive way much earlier than the time-control chart.

Therefore, earlier detections are possible in failures

control chart

References

[1] N. Boffoli, G. Bruno, D. Cavivano, G. Mastelloni;

Statistical process control for Software: a systematic

approach; 2008 ACM 978-1-595933-971-5/08/10.

[2]K. U. Sargut, O. Demirors; Utilization of statistical

process control (SPC) in emergent software organizations:

Pitfallsand suggestions; Springer Science + Business

media Inc. 2006.

[3] Burr,A. and Owen ,M.1996. Statistical Methods for

Software quality . Thomson publishing Company. ISBN 1-

85032-171-X.

[4] Carleton, A.D. and Florac, A.W. 1999. Statistically

controlling the Software process. The 99 SEI Software

Engineering Symposimn, Software Engineering Institute,

Carnegie Mellon University.

[5]Mutsumi Komuro; Experiences of Applying SPC

Techniques to software development processes; 2006

ACM 1-59593-085-x/06/0005.

[6]Ronald P.Anjard;SPC CHART selection

process;Pergaman 0026-27(1995)00119-0Elsevier science

ltd.

[7]R.satyaprasad, Half Logistic Software Reliability

Growth Model,Ph.D. Thesis,2007

[8]M.Xie, T.N. Goh, P. Rajan; Some effective control

chart procedures for reliability monitoring; Elsevier

science Ltd, Reliability Engineering and system safety

77(2002) 143- 150

Author Biographies

Dr. R. Satya Prasad received Ph.D. degree in Computer

Science in the faculty of Engineering in 2007 from

Acharya Nagarjuna University, Guntur, Andhra Pradesh,

India. He have a satisfactory consistent academic track of

record and received gold medal from Acharya Nagarjuna

University for his out standing performance in a first rank

in Masters Degree. He is currently working as Associate

Professor and Head of the Department, in the Department

of Computer Science & Engineering, Acharya Nagarjuna

University. He has occupied various academic

responsibilities like practical examiner, project

adjudicator, external member of board of examiners for

various Universities and Colleges in and around in Andhra

Pradesh. His current research is focused on Software

Engineering, Image Processing & Database Management

System. He has published several papers in National &

International Journals.

K Ramchand H Rao
,

received Master’s degree in

Technology with Computer Science from Dr. M.G.R

University, Chennai, Tamilnadu, India, . He is currently

working as Associate Professor and Head of the

Department, in the Department of Computer Science,

A.S.N. Degree College, Tenali, which is affiliated to

Acharya Nagarjuna University. He has 18 years

experience and 2 years of Industry experience at Morgan

Stanly, USA as Software Analyst. He is currently pursuing

Ph.D., at Department of Computer Science and

Engineering, Acharya Nagarjuna University, Guntur,

Andhra Pradesh, India. His research include on Software

Engineering.

